Estimation of Arm Fat Percentage: from Segmental Bioimpedance to Anthropometry

Diego Nicolás Messina
Cátedra de Evaluación Nutricional; Facultad de Ciencias de la Nutrición. Universidad Juan Agustín Maza. Acceso Este Lateral Sur 2245, Guaymallén (5519), Mendoza, Argentina

Publicado 30-04-2024

Palabras clave

  • Antropometría,
  • Bioimpedancia,
  • Composición Corporal,
  • Masa Grasa,
  • Bioimpedancia Segmentaria

Cómo citar

Nicolás Messina, D. (2024). Estimation of Arm Fat Percentage: from Segmental Bioimpedance to Anthropometry. La Revista Internacional De Cineantropometría, 4(1), 24–31. https://doi.org/10.34256/ijk2414

Dimensions

Resumen

Introducción: Actualmente no existen fórmulas para estimar el porcentaje de grasa por segmentos del cuerpo a partir de medidas antropométricas. El objetivo de este trabajo fue correlacionar el porcentaje de masa grasa del brazo (obtenido mediante bioimpedancia segmentaria) con medidas antropométricas, para generar una fórmula de predicción válida para ambos sexos. Métodos: En este estudio observacional se analizó una muestra de 100 individuos (50 mujeres y 50 hombres) de 18 a 70 años. Se realizó un análisis de bioimpedancia y determinaciones antropométricas según estándares ISAK. Resultados: El porcentaje de masa grasa del brazo estimado por bioimpedancia se correlacionó fuerte y positivamente con los pliegues cutáneos del tríceps y bíceps, el área grasa del brazo y su porcentaje de área grasa, en ambos sexos. En las mujeres, el porcentaje de masa grasa del brazo también se correlacionó con el índice de masa corporal, la circunferencia del brazo y el área de los músculos del brazo. Conclusión: Mediante una fórmula de regresión lineal aplicable a ambos sexos se puede estimar el porcentaje de grasa del brazo a partir de tres medidas antropométricas.

Citas

  1. Addo, O. Y., Pereira, M. A., & Himes, J. H. (2012). Comparability of skinfold thickness to DXA whole-body total fat in their associations with serum triglycerides in youths. European journal of clinical nutrition, 66(9): 989–993. https://doi.org/10.1038/ejcn.2012.22
  2. Anusitviwat, C., Vanitcharoenkul, E., Chotiyarnwong, P., & Unnanuntana, A. (2023). Dual-Frequency Bioelectrical Impedance Analysis is Accurate and Reliable to Determine Lean Muscle Mass in The Elderly. Journal of clinical densitometry, 26(1): 90–96. https://doi.org/10.1016/j.jocd.2022.12.006
  3. Blaak E. (2001). Gender differences in fat metabolism. Current opinion in clinical nutrition and metabolic care, 4(6): 499–502. https://doi.org/10.1097/00075197-200111000-00006
  4. Bray G. A. (2023). Beyond BMI. Nutrients, 15(10): 2254. https://doi.org/10.3390/nu15102254
  5. Bredella M. A. (2017). Sex Differences in Body Composition. Advances in experimental medicine and biology, 1043, 9–27. https://doi.org/10.1007/978-3-319-70178-3_2
  6. Brown, B. H., Karatzas, T., Nakielny, R., & Clarke, R. G. (1988). Determination of upper arm muscle and fat areas using electrical impedance measurements. Clinical physics and physiological measurement, 9(1): 47–55. https://doi.org/10.1088/0143-0815/9/1/004
  7. Campa, F., Toselli, S., Mazzilli, M., Gobbo, L. A., & Coratella, G. (2021). Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13(5): 1620. https://doi.org/10.3390/nu13051620
  8. Cornish, B. H., Jacobs, A., Thomas, B. J., & Ward, L. C. (1999). Optimizing electrode sites for segmental bioimpedance measurements. Physiological measurement, 20(3): 241–250. https://doi.org/10.1088/0967-3334/20/3/302
  9. Deurenberg, P., Weststrate, J. A., & Seidell, J. C. (1991). Body mass index as a measure of body fatness: age- and sex-specific prediction formulas. The British journal of nutrition, 65(2): 105–114. https://doi.org/10.1079/bjn19910073
  10. Durnin, J. V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British journal of nutrition, 32(1): 77–97. https://doi.org/10.1079/bjn19740060
  11. Esco, M. R., Snarr, R. L., Leatherwood, M. D., Chamberlain, N. A., Redding, M. L., Flatt, A. A., Moon, J. R., & Williford, H. N. (2015). Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. Journal of strength and conditioning research, 29(4): 918–925. https://doi.org/10.1519/JSC.0000000000000732
  12. Esparza-Ros F., Vaquero-Cristóbal R., Marfell-Jones M. (2019). Protocolo internacional para la valoración antropométrica. Publicado por Sociedad Internacional para el Avance de la Cineantropometría, República de Sudáfrica.
  13. Frisancho A. R. (1981). New norms of upper limb fat and muscle areas for assessment of nutritional status. The American journal of clinical nutrition, 34(11): 2540–2545. https://doi.org/10.1093/ajcn/34.11.2540
  14. Gallagher, D., Visser, M., Sepúlveda, D., Pierson, R. N., Harris, T., & Heymsfield, S. B. (1996). How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? American journal of epidemiology, 143(3): 228–239. https://doi.org/10.1093/oxfordjournals.aje.a008733
  15. Gomes, A. C., Landers, G. J., Binnie, M. J., Goods, P. S. R., Fulton, S. K., & Ackland, T. R. (2020). Body composition assessment in athletes: Comparison of a novel ultrasound technique to traditional skinfold measures and criterion DXA measure. Journal of science and medicine in sport, 23(11): 1006–1010. https://doi.org/10.1016/j.jsams.2020.03.014
  16. Gómez-Campos, R., Vidal-Espinoza, R., Goncalves, E. M., Langer, R. D., Borges, J. H., Castelli-Correia de Campos, L. F., Urra-Albornoz, C., Sulla Torres, J., & Cossio-Bolaños, M. (2023). Accuracy in body composition scanning by adult half-body DXA scanning. Precisión en la exploración de la composición corporal mediante DXA de medio cuerpo en adultos. Nutricion hospitalaria, 40(2): 362–367. https://doi.org/10.20960/nh.04416
  17. Heymsfield, S. B., McManus, C., Smith, J., Stevens, V., & Nixon, D. W. (1982). Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. The American journal of clinical nutrition, 36(4): 680–690. https://doi.org/10.1093/ajcn/36.4.680
  18. Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Gómez, J. M., Heitmann, B. L., Kent-Smith, L., Melchior, J. C., Pirlich, M., Scharfetter, H., Schols, A. M., Pichard, C., & Composition of the ESPEN Working Group (2004 a). Bioelectrical impedance analysis--part I: review of principles and methods. Clinical nutrition, 23(5): 1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004
  19. Kyle, U. G., Bosaeus, I., De Lorenzo, A. D., Deurenberg, P., Elia, M., Manuel Gómez, J., Lilienthal Heitmann, B., Kent-Smith, L., Melchior, J. C., Pirlich, M., Scharfetter, H., M W J Schols, A., Pichard, C., & ESPEN (2004 b). Bioelectrical impedance analysis-part II: utilization in clinical practice. Clinical nutrition, 23(6): 1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012
  20. Lai, Y. K., Ho, C. Y., Lai, C. L., Taun, C. Y., & Hsieh, K. C. (2022). Assessment of Standing Multi-Frequency Bioimpedance Analyzer to Measure Body Composition of the Whole Body and Limbs in Elite Male Wrestlers. International journal of environmental research and public health, 19(23): 15807. https://doi.org/10.3390/ijerph192315807
  21. Lohman, T.G., Roche, A.F. and Martorell, R. (1988). Anthropometric standardization reference manual. Human Kinetics Books, Chicago.
  22. Lorenzo, A. D., & Andreoli, A. (2003). Segmental bioelectrical impedance analysis. Current opinion in clinical nutrition and metabolic care, 6(5): 551–555. https://doi.org/10.1097/00075197-200309000-00008
  23. Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W., & Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. The American journal of clinical nutrition, 41(4): 810–817. https://doi.org/10.1093/ajcn/41.4.810
  24. Marra, M., Sammarco, R., De Lorenzo, A., Iellamo, F., Siervo, M., Pietrobelli, A., Donini, L. M., Santarpia, L., Cataldi, M., Pasanisi, F., & Contaldo, F. (2019). Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast media & molecular imaging, 1-9. https://doi.org/10.1155/2019/3548284
  25. Martin, A. D., Ross, W. D., Drinkwater, D. T., & Clarys, J. P. (1985). Prediction of body fat by skinfold caliper: assumptions and cadaver evidence. International journal of obesity, 9: 31–39.
  26. Meyer, N. L., Sundgot-Borgen, J., Lohman, T. G., Ackland, T. R., Stewart, A. D., Maughan, R. J., Smith, S., & Müller, W. (2013). Body composition for health and performance: a survey of body composition assessment practice carried out by the Ad Hoc Research Working Group on Body Composition, Health and Performance under the auspices of the IOC Medical Commission. British journal of sports medicine, 47(16): 1044–1053. https://doi.org/10.1136/bjsports-2013-092561
  27. Nikolaidis, P. T., Rosemann, T., & Knechtle, B. (2020). Skinfold Thickness Distribution in Recreational Marathon Runners. International journal of environmental research and public health, 17(9): 2978. https://doi.org/10.3390/ijerph17092978
  28. Oyhenart, E. E., Torres, M. F., Garraza, M., Cesani, M. F., Navazo, B., Castro, L. E., Alfaro, E., Bejarano, I. F., Carrillo, R., Dahinten, S. L., Lomaglio, D., Luis, M. A., Menecier, N., Quintero, F. A., Román, E. M., Zonta, M. L., Marrodán Serrano, M. D., & Dipierri, J. E. (2019). Reference percentiles for mid-upper arm circumference, upper arm muscle and fat areas in the Argentine child and adolescent population (4-14 years old). Percentilos de referencia de la circunferencia y de las áreas muscular y grasa del brazo para la población infantojuvenil argentina (4-14 años). Archivos argentinos de pediatria, 117(4): e347–e355. https://doi.org/10.5546/aap.2019.eng.e347
  29. Pereira-da-Silva, L., Veiga Gomes, J., Clington, A., Videira-Amaral, J. M., & Bustamante, S. A. (1999). Upper arm measurements of healthy neonates comparing ultrasonography and anthropometric methods. Early human development, 54(2): 117–128. https://doi.org/10.1016/s0378-3782(98)00085-1
  30. Ribeiro, G., de Aguiar, R. A., Penteado, R., Lisbôa, F. D., Raimundo, J. A. G., Loch, T., Meira, Â., Turnes, T., & Caputo, F. (2022). A-Mode Ultrasound Reliability in Fat and Muscle Thickness Measurement. Journal of strength and conditioning research, 36(6): 1610–1617. https://doi.org/10.1519/JSC.0000000000003691
  31. Sann, L., Durand, M., Picard, J., Lasne, Y., & Bethenod, M. (1988). Arm fat and muscle areas in infancy. Archives of disease in childhood, 63(3): 256–260. https://doi.org/10.1136/adc.63.3.256
  32. Siedler, M. R., Rodriguez, C., Stratton, M. T., Harty, P. S., Keith, D. S., Green, J. J., Boykin, J. R., White, S. J., Williams, A. D., DeHaven, B., & Tinsley, G. M. (2023). Assessing the reliability and cross-sectional and longitudinal validity of fifteen bioelectrical impedance analysis devices. The British journal of nutrition, 130(5): 827–840. https://doi.org/10.1017/S0007114522003749
  33. Thomasset M. A. (1962). Bioelectric properties of tissue. Impedance measurement in clinical medicine. Significance of curves obtained. Lyon medical, 94: 107–118.
  34. Vaquero-Cristóbal, R., Catarina-Moreira, A., Esparza-Ros, F., Barrigas, C., Albaladejo-Saura, M., & Vieira, F. (2023). Skinfolds compressibility and digital caliper's time response in skinfold measurement in male and female young adults. Journal of the International Society of Sports Nutrition, 20(1): 2265888. https://doi.org/10.1080/15502783.2023.2265888
  35. Veilleux, A., Tchernof, A. (2012). Sex Differences in Body Fat Distribution. In: Symonds, M. (eds) Adipose Tissue Biology. Springer, New York. https://doi.org/10.1007/978-1-4614-0965-6_5
  36. Ward L. C. (2012). Segmental bioelectrical impedance analysis: an update. Current opinion in clinical nutrition and metabolic care, 15(5): 424–429. https://doi.org/10.1097/MCO.0b013e328356b944
  37. Yin, L., Fan, Y., Lin, X., Zhang, L., Li, N., Liu, J., Guo, J., Zhang, M., He, X., Liu, L., Zhang, H., Shi, M., Chong, F., Chen, X., Wang, C., Wang, X., Liang, T., Liu, X., Deng, L., Li, W., Chunhua, S., Jiuwei, C., Hanping, S., Hongxia, X. (2022). Fat mass assessment using the triceps skinfold thickness enhances the prognostic value of the Global Leadership Initiative on Malnutrition criteria in patients with lung cancer. British Journal of Nutrition, 127(10): 1506-1516. https://doi.org/10.1017/s0007114521002531