A Comparison of Vertical Jump Performance between Mesomorphic and Ectomorphic Dominant Somatotypes

Ankur Jyoti Phukon
Department of Physical Education, Tripura University, Suryamaninagar, Tripura-799022, India.
Krishnendu Dhar
Department of Physical Education, Tripura University, Suryamaninagar, Tripura-799022, India.

Publicado 30-04-2024

Palabras clave

  • Antropometría,
  • Sedentarismo,
  • Potencia anaeróbica,
  • Relación potencia-masa corporal

Cómo citar

Phukon, A. J., & Dhar, K. (2024). A Comparison of Vertical Jump Performance between Mesomorphic and Ectomorphic Dominant Somatotypes. La Revista Internacional De Cineantropometría, 4(1), 1–8. https://doi.org/10.34256/ijk2411

Dimensions

Resumen

Introducción: El rendimiento del salto vertical es una medida importante de la potencia de las piernas y la explosividad en los deportes. El somatotipo, que se refiere a la forma y composición del cuerpo, puede estar relacionado con la capacidad de salto vertical. Este estudio tuvo como objetivo comparar el salto vertical, la potencia anaeróbica máxima y las capacidades anaeróbicas relativas entre los somatotipos ectomorfo-mesomorfo y mesomórfico-ectomorfo entre estudiantes varones sedentarios. Métodos: En este estudio participaron un total de 26 estudiantes. Los participantes se sometieron a evaluaciones antropométricas para determinar las calificaciones de somatotipo de Heath-Carter. Además, se realizaron saltos con contramovimiento para evaluar la altura del salto vertical, estimar la potencia anaeróbica máxima mediante la ecuación de Sayers y calcular la relación potencia-masa corporal. Resultados: No se encontraron diferencias estadísticamente significativas entre ectomorfos-mesomorfos (n=15) y mesomorfos-ectomorfos (n=11) para salto vertical (54,47 ± 8,33 cm vs 57,09 ± 6,28 cm, p = 0,25), potencia anaeróbica máxima (3576 ± 542,01 W vs 3473,47 ± 538,71 W, p = 0,64), o relación potencia-masa corporal (69,97 ± 10,51 W/kg vs 65,10 ± 7,46 W/kg, p = 0,18). Conclusión: Si bien este estudio inicial no sugirió diferencias sustanciales en el rendimiento según el somatotipo, se necesitan más investigaciones con mayor poder estadístico a través de tamaños de muestra más grandes para determinar de manera concluyente las relaciones entre el físico y las capacidades anaeróbicas en la población general. Emparejar y seguir a los atletas durante el entrenamiento deportivo también puede aclarar las ventajas conferidas únicamente por la morfología.

Citas

  1. Aerenhouts, D., Delecluse, C., Hagman, F., Taeymans, J., Debaere, S., Van Gheluwe, B., & Clarys, P. (2012). Comparison of anthropometric characteristics and sprint start performance between elite adolescent and adult sprint athletes. European Journal of Sport Science, 12(1): 9–15. https://doi.org/10.1080/17461391.2010.536580
  2. Barr, M. J., Sheppard, J. M., Gabbett, T. J., & Newton, R. U. (2014). Long-Term Training-Induced Changes in Sprinting Speed and Sprint Momentum in Elite Rugby Union Players. The Journal of Strength & Conditioning Research, 28(10): 2724. https://doi.org/10.1519/JSC.0000000000000364
  3. Burdukiewicz, A., Pietraszewska, J., Stachoń, A., & Andrzejewska, J. (2018). Anthropometric profile of combat athletes via multivariate analysis. The Journal of Sports Medicine and Physical Fitness, 58(11): 1657-65. https://doi.org/10.23736/S0022-4707.17.07999-3
  4. Carter, J. E. L., Ackland, T. R., Kerr, D. A., & Stapff, A. B. (2005). Somatotype and size of elite female basketball players. Journal of Sports Sciences, 23(10): 1057–1063. https://doi.org/10.1080/02640410400023233
  5. Catikkas, F., Kurt, C., & Atalag, O. (2013). Kinanthropometric attributes of young male combat sports athletes. Collegium antropologicum, 37(4): 1365-1368.
  6. Cinarli, F. S., Buyukcelebi, H., Esen, O., Barasinska, M., Cepicka, L., Gabrys, T., Nalbant, U., & Karayigit, R. (2022). Does Dominant Somatotype Differentiate Performance of Jumping and Sprinting Variables in Young Healthy Adults? International Journal of Environmental Research and Public Health, 19(19): 11873. https://doi.org/10.3390/ijerph191911873
  7. Fidelix, Y. L., Berria, J., Ferrari, E. P., Ortiz, J. G., Cetolin, T., & Petroski, E. L. (2014). Somatotype of competitive youth soccer players from Brazil. Journal of Human Kinetics, 42: 259–266. https://doi.org/10.2478/hukin-2014-0079
  8. Jalilvand, F., Banoocy, N. K., Rumpf, M. C., & Lockie, R. G. (2019). Relationship Between Body Mass, Peak Power, and Power-to-Body Mass Ratio on Sprint Velocity and Momentum in High-School Football Players. Journal of Strength and Conditioning Research, 33(7): 1871–1877. https://doi.org/10.1519/JSC.0000000000002808
  9. Kandel, M., Baeyens, J. P., & Clarys, P. (2014). Somatotype, training and performance in Ironman athletes. European Journal of Sport Science, 14(4): 301–308. https://doi.org/10.1080/17461391.2013.813971
  10. Laubach, L. L., & McConville, J. T. (1969). The relationship of strength to body size and typology. Medicine & Science in Sports & Exercise, 1(4): 189-194.
  11. Lewandowska, J., Buśko, K., Pastuszak, A., & Boguszewska, K. (2011). Somatotype Variables Related to Muscle Torque and Power in Judoists. Journal of Human Kinetics, 30(2011): 21–28. https://doi.org/10.2478/v10078-011-0069-y
  12. Marta, C. C., Marinho, D. A., Barbosa, T. M., Carneiro, A. L., Izquierdo, M., & Marques, M. C. (2013). Effects of Body Fat and Dominant Somatotype on Explosive Strength and Aerobic Capacity Trainability in Prepubescent Children. The Journal of Strength & Conditioning Research, 27(12): 3233. https://doi.org/10.1519/JSC.0000000000000252
  13. Moncef, C., Said, M., Olfa, N., & Dagbaji, G. (2012). Influence of morphological characteristics on physical and physiological performances of tunisian elite male handball players. Asian journal of sports medicine, 3(2): 74. https://doi.org/10.5812/asjsm.34700
  14. Phukon, A. J., Farooque, S., & Dhar, K. (2023). Somatotypes of East-Zone Indian Inter-University Kho-Kho Players. Physical Education Theory and Methodology, 23(6): 925–931. https://doi.org/10.17309/tmfv.2023.6.15
  15. Ryan-Stewart, H., Faulkner, J., & Jobson, S. (2018). The influence of somatotype on anaerobic performance. PLOS ONE, 13(5): 1-11. https://doi.org/10.1371/journal.pone.0197761
  16. Saha, S. (2015). Somatotype, body composition and explosive power of athlete and non-athlete. Archives of Exercise in Health and Disease, 5(1-2): 354-358. https://doi.org/10.4172/2161-0673.1000137
  17. Sayers, S. P., Harackiewicz, D. V., Harman, E. A., Frykman, P. N., & Rosenstein, M. T. (1999). Cross-validation of three jump power equations. Medicine and science in sports and exercise, 31(4): 572-577.
  18. Tsolakis, C., Bogdanis, G. C., Nikolaou, A., & Zacharogiannis, E. (2011). Influence of type of muscle contraction and gender on postactivation potentiation of upper and lower limb explosive performance in elite fencers. Journal of sports science & medicine, 10(3): 577.
  19. Wang, X., Lv, C., Qin, X., Ji, S., & Dong, D. (2023). Effectiveness of plyometric training vs. complex training on the explosive power of lower limbs: A Systematic review. Frontiers in Physiology, 13: 1061110. https://doi.org/10.3389/fphys.2022.1061110
  20. Zamparo, P., Antonutto, G., Capelli, C., & Di Prampero, P. E. (2000). Effects of different after-loads and knee angles on maximal explosive power of the lower limbs in humans. European Journal of Applied Physiology, 82(5–6): 381–390. https://doi.org/10.1007/s004210000215
  21. Zary, J. C., Reis, V. M., Rouboa, A., Silva, A. J., Fernandes, P. R., & Filho, J. F. (2010). The somatotype and dermatoglyphic profiles of adult, junior and juvenile male Brazilian top-level volleyball players. Science & Sports, 25(3): 146–152. https://doi.org/10.1016/j.scispo.2009.09.002