Weight-Adjusted Waist index as an Independent Predictor of Sarcopenia in Patients with type 2 Diabetes Mellitus
Published 25-08-2025
Keywords
- Sarcopenic,
- Type 2 diabetes mellitus,
- Anthropometry,
- Weight-adjusted waist index,
- Indian population
How to Cite
Copyright (c) 2025 Anil Kumar Yadav, Manjusha Shinde, Alpa Nasrin Samuel Shaikh, Rubia Mondal, Arpita Chakraborty, Subhadeep Ghoshal, Aruna Raju, Boudhayan Das Munshi, Tandra Ghosh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Dimensions
Abstract
Introduction: Diabetes, and sarcopenia frequently co-occur and adversely affect muscular strength, body composition, and functional performance in adults. Identifying anthropometric markers that effectively distinguish individuals with and without these conditions is crucial for early screening and intervention. Methods: We compared diabetic and non-diabetic groups on physical attributes—handgrip strength, calf circumference (CC), and six-meter walk test (6MWT). We evaluated anthropometric indices, including waist-to-height ratio (WHtR), waist circumference (WC), waist-to-hip ratio (WHR), and weight-adjusted waist index (WWI), using Receiver Operating Characteristic (ROC) curves (AUC) and Youden’s J statistic. Results: We found WWI showed the highest discriminative ability with an AUC of 0.745 (95% CI: 0.630–0.859) and the highest Youden Index (0.445), indicating the best overall balance between sensitivity and specificity. WHtR demonstrated the highest sensitivity (0.806), while WHR achieved the highest specificity (0.977) and the best positive predictive value (PPV = 0.857). WWI also provided the highest negative predictive value (NPV = 0.767). Collectively, these findings highlight WWI as the strongest overall predictor, with WHtR and WHR showing complementary strengths in sensitivity and specificity, respectively. Conclusion: Establishing simple, cost-effective anthropometric cutoffs for sarcopenia in Indian diabetics may facilitate early diagnosis in routine clinical and community settings, enabling timely intervention and improved outcomes. WWI may be considered to be included in clinical and public health screening programs targeting individuals at risk for diabetes, sarcopenia related functional decline.
References
- Ai, Y., Xu, R., Liu, L. (2021). The prevalence and risk factors of sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetology and Metabolic Syndrome, 13(1): 93. https://doi.org/10.1186/s13098-021-00707-7
- Álvarez-Bustos, A., Carnicero, J.A., Coelho-Junior, H.J., Calvani, R., García-García, F.J., Marzetti, E., Landi, F., Rodriguez-Mañas, L. (2024). Diagnostic and prognostic value of calf circumference for sarcopenia in community-dwelling older adults. Journal of Nutrition, Health and Aging, 28(8): 100290. https://doi.org/10.1016/j.jnha.2024.100290
- Andersen, H., Nielsen, S., Mogensen, C.E., Jakobsen, J. (2004). Muscle strength in type 2 diabetes. Diabetes, 53(6): 1543–1548. https://doi.org/10.2337/diabetes.53.6.1543
- Batsis, J.A., Mackenzie, T.A., Barre, L.K., Lopez-Jimenez, F., Bartels, S.J. (2014). Sarcopenia, sarcopenic obesity and mortality in older adults: Results from the National Health and Nutrition Examination Survey III. European Journal of Clinical Nutrition, 68(9):1001-1007. https://doi.org/10.1038/ejcn.2014.117
- Batsis, J.A., Villareal, D.T. (2018). Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. In Nature Reviews Endocrinology, 14(9): 513–537. https://doi.org/10.1038/s41574-018-0062-9
- Belfield, A.E., Wilkinson, T.J., Henson, J., Sargeant, J.A., Breen, L., Hall, A.P., Davies, M.J., Yates, T. (2024). Sarcopenia prevalence using handgrip strength or chair stand performance in adults living with type 2 diabetes mellitus. Age and Ageing, 53(5): afae090. https://doi.org/10.1093/ageing/afae090
- Bohannon, R.W. (2008). Handgrip dynamometry predicts future outcomes in aging adults. Journal of Geriatric Physical Therapy, 31(1): 3-10. https://doi.org/10.1519/00139143-200831010-00002
- Carter, J.E.L. (2002). Part 1: The Heath-Carter anthropometric somatotype-instruction manual. Department of Exercise and Nutritional Sciences San Diego State University, 1-26.
- Chen, L.K., Woo, J., Assantachai, P., Auyeung, T.W., Chou, M.Y., Iijima, K., Jang, H.C., Kang, L., Kim, M., Kim, S., Kojima, T., Kuzuya, M., Lee, J.S.W., Lee, S.Y., Lee, W.J., Lee, Y., Liang, C.K., Lim, J.Y., Lim, W.S., … Arai, H. (2020). Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. Journal of the American Medical Directors Association, 21(3):300-307.
- Dhar, M., Kapoor, N., Suastika, K., Khamseh, M. E., Selim, S., Kumar, V., Raza, S.A., Azmat, U., Pathania, M., Rai Mahadeb, Y.P., Singhal, S., Naseri, M.W., Aryana, I.S., Thapa, S.D., Jacob, J., Somasundaram, N., Latheef, A., Dhakal, G.P., Kalra, S. (2022). South Asian Working Action Group on SARCOpenia (SWAG-SARCO) – A consensus document. Osteoporosis and Sarcopenia, 8(2): 35-57. https://doi.org/10.1016/j.afos.2022.04.001
- Esparza-Ros, F., Vaquero-Cristóbal, R., Marfell-Jones, M. (2019). International standards for anthropometric assessment. International Society for the Advancement of Kinanthropometry (ISAK).
- Kalyani, R.R., Corriere, M., Ferrucci, L. (2014). Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. In The Lancet Diabetes and Endocrinology, 2(10): 819–829. https://doi.org/10.1016/S2213-8587(14)70034-8
- Kawakami, R., Murakami, H., Sanada, K., Tanaka, N., Sawada, S.S., Tabata, I., Higuchi, M., Miyachi, M. (2015). Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatrics and Gerontology International, 15(8):969-976. https://doi.org/10.1111/ggi.12377
- Khader, Y., Batieha, A., Jaddou, H., El-Khateeb, M., Ajlouni, K. (2019). The performance of anthropometric measures to predict diabetes mellitus and hypertension among adults in Jordan. BMC Public Health, 19(1):1416. https://doi.org/10.1186/s12889-019-7801-2
- Kim, T.N., Choi, K.M. (2013). Sarcopenia: Definition, Epidemiology, and Pathophysiology. Journal of Bone Metabolism, 20(1): 1. https://doi.org/10.11005/jbm.2013.20.1.1
- Liu, J., Zhu, Y., Tan, J.K., Ismail, A.H., Ibrahim, R., Hassan, N.H. (2023). Factors Associated with Sarcopenia among Elderly Individuals Residing in Community and Nursing Home Settings: A Systematic Review with a Meta-Analysis. In Nutrients, 15(20):4335. https://doi.org/10.3390/nu15204335
- Martone, A.M., Levati, E., Ciciariello, F., Galluzzo, V., Salini, S., Calvani, R., Marzetti, E., Landi, F. (2025). Impact of waist-to-hip and waist-to-height ratios on physical performance: insights from the Longevity Check-up 8+ project. Aging. https://doi.org/10.18632/aging.206260
- Mesinovic, J., Zengin, A., De Courten, B., Ebeling, P.R., Scott, D. (2019). Sarcopenia and type 2 diabetes mellitus: A bidirectional relationship. In Diabetes, Metabolic Syndrome and Obesity, 12:1057-1072. https://doi.org/10.2147/DMSO.S186600
- Park, M.J., Hwang, S.Y., Kim, N.H., Kim, S.G., Choi, K.M., Baik, S.H., Yoo, H.J. (2023). A Novel Anthropometric Parameter, Weight-Adjusted Waist Index Represents Sarcopenic Obesity in Newly Diagnosed Type 2 Diabetes Mellitus. Journal of Obesity and Metabolic Syndrome, 32(2): 130. https://doi.org/10.7570/jomes23005
- Qiao, Y.S., Chai, Y.H., Gong, H.J., Zhuldyz, Z., Stehouwer, C.D.A., Zhou, J.B., Simó, R. (2021). The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. In Frontiers in Endocrinology, 12:782391. https://doi.org/10.3389/fendo.2021.782391
- Rolland, Y., Lauwers-Cances, V., Cournot, M., Nourhashémi, F., Reynish, W., Rivière, D., Vellas, B., Grandjean, H. (2003). Sarcopenia, calf circumference, and physical function of elderly women: A cross-sectional study. Journal of the American Geriatrics Society, 51(8): 1120-1124. https://doi.org/10.1046/j.1532-5415.2003.51362.x
- Seok, W.P., Goodpaster, B.H., Strotmeyer, E.S., Kuller, L.H., Broudeau, R., Kammerer, C., De Rekeneire, N., Harris, T.B., Schwartz, A.V., Tylavsky, F.A., Yong-Wook, C., Newman, A.B. (2007). Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes Care, 30(6):1507-1512. https://doi.org/10.2337/dc06-2537
- Tsai, A.C.H., Lai, M.C., Chang, T.L. (2012). Mid-arm and calf circumferences (MAC and CC) are better than body mass index (BMI) in predicting health status and mortality risk in institutionalized elderly Taiwanese. Archives of Gerontology and Geriatrics, 54(3):443-447. https://doi.org/10.1016/j.archger.2011.05.015
- Volpato, S., Bianchi, L., Lauretani, F., Lauretani, F., Bandinelli, S., Guralnik, J. M., Zuliani, G., & Ferrucci, L. (2012). Role of muscle mass and muscle quality in the association between diabetes and gait speed. Diabetes Care, 35(8):1672-1679. https://doi.org/10.2337/dc11-2202
- Yoo, M.C., Won, C.W., Soh, Y. (2022). Association of high body mass index, waist circumference, and body fat percentage with sarcopenia in older women. BMC Geriatrics, 22(1): 937. https://doi.org/10.1186/s12877-022-03643-x