Body Composition Assessment of University Athletes: Comparison Between the Data Obtained by Bioelectrical Impedance and by Anthropometry

Bruno Abreu
Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre, 4150- 180 Porto, Portugal
Rafael Henriques
Department of Dietetics and Nutrition, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
João Paulo Figueiredo
Department of Complementary Sciences, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal
Helena Loureiro
Department of Dietetics and Nutrition, Coimbra Health School, Polytechnic Institute of Coimbra, Rua 5 de Outubro, 3046-854 Coimbra, Portugal

Publicado 31-12-2022

Palabras clave

  • Atletas universitarios,
  • Composición corporal,
  • Impedancia bioeléctrica,
  • Antropometría

Cómo citar

Abreu, B., Henriques, R., Figueiredo, J. P., & Loureiro, H. (2022). Body Composition Assessment of University Athletes: Comparison Between the Data Obtained by Bioelectrical Impedance and by Anthropometry. La Revista Internacional De Cineantropometría, 2(2), 1–12. https://doi.org/10.34256/ijk2221

Dimensions

Resumen

Objetivo: Comparar los valores obtenidos de los métodos prácticos más utilizados en la práctica clínica, por impedancia bioeléctrica y por antropometría de la composición corporal de deportistas universitarios. Métodos: Estudio analítico observacional cuya muestra incluyó 26 atletas de un equipo de fútbol universitario portugués. La evaluación de la composición corporal de los individuos fue ejecutada a través de bioimpedancia eléctrica y antropometría por un antropometrista ISAK nivel uno acreditado completando el protocolo inherente. Para el análisis de los datos se consideró un nivel de significación crítico del 5% para un nivel de confianza del 95% para contrastar las hipótesis entre las variables en estudio y sus correlaciones, se aplicó la prueba paramétrica de coeficiente de correlación lineal de Pearson. Resultados: Se destaca la variabilidad de la composición corporal evaluada en la muestra. Se encontraron correlaciones significativas para la masa grasa y la suma de los pliegues cutáneos (r=0,782; p=<0,001), así como para los pliegues cutáneos individuales. Respectivamente mediante la elaboración del diagrama de dispersión se obtuvo el siguiente r2= 0.612 lineal, que representa la correlación entre las variables. Se encontraron correlaciones similares en el contexto de la masa libre de grasa y las circunferencias. Sin embargo, en el caso de la relación cintura-cadera evaluada por bioimpedancia eléctrica y la relación cintura-cadera evaluada por antropometría, hubo correlaciones menores en comparación con los demás parámetros evaluados (r=0,441; p=0,036). Conclusión: Se pretende facilitar a los profesionales del deporte interesados la selección de métodos prácticos para evaluar la composición corporal de sus atletas, eliminando al mismo tiempo el riesgo de seleccionar métodos inapropiados. Se destaca la posibilidad de sustituir o complementar el análisis de bioimpedancia eléctrica con un método antropométrico accesible y viable como es la suma de pliegues cutáneos, especialmente en equipos de menor presupuesto como los equipos universitarios.

Citas

  1. Achamrah, N., Colange, G., Delay, J., Rimbert, A., Folope, V., Petit A., Grigioni S., Déchelotte P., Coëffier, M. (2018). Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLOS ONE, 13(7): e0200465. https://doi.org/10.1371/journal.pone.0200465
  2. Amaro-Gahete, F.J., De-la-O, A., Jurado-Fasoli, L., Sanchez-Delgado, G., Ruiz, J.R., Castillo, M.J. (2020). Metabolic rate in sedentary adults, following different exercise training interventions: The FIT-AGEING randomized controlled trial. Clinical Nutrition, 39(11): 3230-3240. https://doi.org/10.1016/j.clnu.2020.02.001
  3. Bahat, G., Tufan, A., Kilic, C., Ozturk, S., Akpinar, T.S., Kose, M., Erten, N., Karan, M.A., Cruz-Jentoft, A.J. (2019). Cut-off points for weight and body mass index adjusted bioimpedance analysis measurements of muscle mass. Aging Clinical and Experimental Research, 31(7): 935–942. https://doi.org/10.1007/s40520-018-1042-6
  4. Campa, F., Toselli, S., Mazzilli, M., Gobbo, L.A., Coratella, G. (2021). Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients, 13(5): 1620. https://doi.org/10.3390/nu13051620
  5. Canda, A.S. (2021). Muscle mass index estimated by anthropometry vs bioelectrical impedance: Study in athletes competing by weight categories. Apunts Sports Medicine, 56(211): 100360. https://doi.org/10.1016/j.apunsm.2021.100360
  6. Dimitrijevic, M., Lalovic, D., Milovanov, D. (2021). Correlation of Different Anthropometric Methods and Bioelectric Impedance in Assessing Body Fat Percentage of Professional Male Athletes. Serbian Journal of Experimental and Clinical Research, 1(1): 1–9. https://doi.org/10.2478/sjecr-2021-0026
  7. Dodd, K.D., Newans, T.J. (2018). Talent identification for soccer: Physiological aspects. Journal of Science and Medicine in Sport, 21(10): 1073–1078. https://doi.org/10.1016/j.jsams.2018.01.009
  8. Egan, K.P. (2019). Supporting Mental Health and Well-being Among Student-Athletes. Clinics in Sports Medicine, 38(4): 537–544. https://doi.org/10.1016/j.csm.2019.05.003
  9. Esparza-Ros, F., Vaquero-Cristóbal R., Marfell-Jones M. (2019). International Standards for Anthropometric Assessment (UCAM Universidad Católica de Murcia, Ed.). The International Society for the Advancement of Kinanthropometry.
  10. Hannon, M.P., Carney, D.J., Floyd, S., Parker, L.J. F., McKeown, J., Drust, B., Unnithan, V. B., Close, G.L., Morton J.P. (2020). Cross-sectional comparison of body composition and resting metabolic rate in Premier League academy soccer players: Implications for growth and maturation. Journal of Sports Sciences, 38(11–12): 1326–1334. https://doi.org/10.1080/02640414.2020.1717286
  11. Jagim, A.R., Camic, C.L., Kisiolek, J., Luedke, J., Erickson, J., Jones, M.T., Oliver, J.M. (2018). Accuracy of Resting Metabolic Rate Prediction Equations in Athletes. Journal of Strength and Conditioning Research, 32(7): 1875–1881. https://doi.org/10.1519/JSC.0000000000002111
  12. Jung, M.H., Namkoong, K., Lee, Y., Koh, Y.J., Eom, K., Jang, H., Jung, W., Bae, J., Park, J. (2021). Wrist-wearable bioelectrical impedance analyzer with miniature electrodes for daily obesity management. Scientific Reports, 11(1): 1238. https://doi.org/10.1038/s41598-020-79667-3
  13. Kasper, A.M., Langan-Evans, C., Hudson, J.F., Brownlee, T.E., Harper, L.D., Naughton, R.J., Morton, J.P., Close G.L. (2021). Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients, 13(4): 1075.
  14. Kim, H., Song, K. H., Ambegaonkar, J.P., Chung, S., Jeon, K., Jiang, F.L., Eom, J. J., Kim, C.H. (2022). Two-megahertz impedance index prediction equation for appendicular lean mass in Korean older people. BMC Geriatrics, 22(1): 385. https://doi.org/10.1186/s12877-022-02997-6
  15. Lee, L.W., Liao, Y.S., Lu, H.K., Hsiao, P.L., Chen, Y.Y., Chi, C.C., Hsieh, K.C. (2017). Validation of two portable bioelectrical impedance analyses for the assessment of body composition in school age children. PLOS ONE, 12(2): e0171568. https://doi.org/10.1371/journal.pone.0171568
  16. López-Taylor, J.R., González-Mendoza, R.G., Gaytán-González, A., Jiménez-Alvarado, J.A., Villegas-Balcázar, M., Jáuregui-Ulloa, E.E., Torres-Naranjo, F. (2018). Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. Journal of Sports Medicine, 2018(1): 1–7. https://doi.org/10.1155/2018/6843792
  17. Martinez-Ferran, M., Rafei, E., Romero-Morales, C., Pérez-Ruiz, M., Lam-Meléndez, A., Munguia-Izquierdo, D., Pareja-Galeano H. (2022). Optimizing Field Body Fat Percentage Assessment in Professional Soccer Players. Applied Sciences, 12(2): 727. https://doi.org/10.3390/app12020727
  18. Munguía-Izquierdo, D., Suárez-Arrones, L., di Salvo, V., Paredes-Hernández, V., Ara, I., Mendez-Villanueva, A. (2019). Estimating fat-free mass in elite youth male soccer players: cross-validation of different field methods and development of prediction equation. Journal of Sports Sciences, 37(11): 1197–1204. https://doi.org/10.1080/02640414.2018.1551045
  19. Nunez, F.J., Munguia-Izquierdo, D., Petri C., Suarez-Arrones, L. (2019). Field Methods to Estimate Fat-free Mass in International Soccer Players. International Journal of Sports Medicine, 40(10): 619–624. https://doi.org/10.1055/a-0969-8591
  20. Nunez, F.J., Munguía-Izquierdo, D., Suárez-Arrones, L. (2020). Validity of Field Methods to Estimate Fat-Free Mass Changes Throughout the Season in Elite Youth Soccer Players. Frontiers in Physiology, 11(16): 1–6. https://doi.org/10.3389/fphys.2020.00016
  21. Pestana, M.H., Gageiro, J.N. (2003). Data analysis for social sciences: the complementarity of SPSS, Edicoes Silabo.
  22. Quinaud, R.T., Fernandes, A., Gonçalves, C.E., Carvalho, H.M. (2020). Student-Athletes’ Motivation and Identity: Variation Among Brazilian and Portuguese University Student-Athletes. Psychological Reports, 123(5): 1703–1723. https://doi.org/10.1177/0033294119892885
  23. Silva, A.M. (2019). Structural and functional body components in athletic health and performance phenotypes. European Journal of Clinical Nutrition, 73(1): 215–224. https://doi.org/10.1038/s41430-018-0321-9
  24. Silva, A.M., Júdice, P.B., Carraça, E. v., King, N., Teixeira, P.J., & Sardinha, L.B. (2018). What is the effect of diet and/or exercise interventions on behavioural compensation in non-exercise physical activity and related energy expenditure of free-living adults? A systematic review. British Journal of Nutrition, 119(12): 1327–1345. https://doi.org/10.1017/S000711451800096X
  25. Smith-Ryan, A.E., Hirsch, K.R., Saylor, H.E., Gould, L.M., Blue, M.N.M. (2020). Nutritional Considerations and Strategies to Facilitate Injury Recovery and Rehabilitation. Journal of Athletic Training, 55(9): 918–930. https://doi.org/10.4085/1062-6050-550-19
  26. Suarez-Arrones, L., Petri, C., Maldonado, R.A., Torreno, N., Munguía-Izquierdo, D., di Salvo, V., Méndez-Villanueva, A. (2018). Body fat assessment in elite soccer players: cross-validation of different field methods. Science and Medicine in Football, 2(3): 203–208. https://doi.org/10.1080/24733938.2018.1445871
  27. Villada-Gómez, J. S., González-Correa, C.H., Pineda-Zuluaga, M.C. (2021). Skeletal Muscle Mass Index cut-offs by bioelectrical impedance analysis to determine Sarcopenia Based on healthy young or old Populations: A Comparative Study. Journal of Physics: Conference Series, 2008(1): 012012. https://doi.org/10.1088/1742-6596/2008/1/012012
  28. Wagner, D.R., Teramoto, M. (2020). Interrater reliability of novice examiners using A-mode ultrasound and skinfolds to measure subcutaneous body fat. PLOS ONE, 15(12): e0244019. https://doi.org/10.1371/journal.pone.0244019
  29. Wu, P.F., Ke, Y.P. (2022). Participation in Sports Clubs during College Is an Important Factor Associated with School Counselors’ Participation in Leisure Time Activities. International Journal of Environmental Research and Public Health, 19(9): 5632. https://doi.org/10.3390/ijerph19095632