Differences in the obesity screening ability of 19 anthropometric parameters in young Japanese females: Comparisons of direct measurements, conventional and novel indices
Publicado 31-12-2021
Palabras clave
- Antropometría,
- Índices,
- Cribado De Obesidad,
- Japonés,
- Mujeres Jóvenes
- DXA ...Más
Cómo citar
Derechos de autor 2021 Masaharu Kagawa

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Dimensions
Resumen
Objetivo: El presente estudio tuvo como objetivo examinar la utilidad de los parámetros antropométricos para el cribado de la obesidad en mujeres jóvenes japonesas mediante la evaluación de sus asociaciones con indicadores de adiposidad obtenidos de una absorciometría de rayos X de energía dual (DXA). Métodos: Se examinó la capacidad de detección de 19 parámetros antropométricos utilizando un total de 50 jóvenes japonesas que completaron antropometría detallada y una exploración DXA de cuerpo entero. Los parámetros antropométricos se categorizaron en 1) variables medidas, 2) índices convencionales y 3) índices novedosos y se investigaron sus correlaciones con las variables de grasa corporal obtenidas de DXA. Utilizando un porcentaje de grasa corporal (% GC) del 30% como punto de corte de la obesidad, se observó el área bajo la curva (AUC) a partir del análisis de las características operativas del receptor (ROC) y se determinaron los puntos de corte de los parámetros antropométricos. Resultados: Si bien la masa corporal se correlacionó altamente con la masa de tejido graso total en esta muestra (r = 0,847), el índice de masa corporal (IMC) y la circunferencia de la cintura (CC) se correlacionaron más fuertemente con la grasa del tronco y los tejidos grasos androides, respectivamente (r = 0,820 y 0,865). Sin embargo, todas las variables de composición corporal se correlacionaron con la suma de ocho pliegues cutáneos (Sum8SF) si se utilizó% BF (r varió 0,672 - 0,834). Entre los parámetros antropométricos examinados, Ʃ8SF mostró el AUC más alto para% BFTotal,% BFGynoid y% BFIAAT, mientras que Ʃ2SF y la circunferencia abdominal (AbC) mostraron el AUC más alto para% BFTrunk y% BFAndroid respectivamente. Conclusión: Las variables medidas directamente y los índices convencionales mostraron correlaciones de moderadas a fuertes con los resultados de la DXA. Sin embargo, la suma de los pliegues cutáneos, en particular Sum8SF, mostró correlaciones más fuertes y una capacidad de detección superior para la obesidad. Aunque se han utilizado muchos índices nuevos para detectar la obesidad y las anomalías metabólicas, los resultados observados indicaron que estos índices pueden no ser necesariamente mejores que los valores medidos o los índices convencionales. Se justifican más investigaciones para confirmar los puntos de corte propuestos.
Citas
- Ashwell M. Hsieh S. D. (2005). Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. International Journal of Food Science and Nutrition, 56(5): 303-307.
- Basen-Engquist K. Chang M. (2011). Obesity and cancer risk: recent review and evidence. Current Oncology Reports, 13(1): 71-76.
- Bergman R. N., Stefanovski D., Buchanan, T. A., Sumner A. E., Reynolds J. C., Sebring N. G., Xiang A. H. Watanabe R. M. (2011). A better index of body adiposity. Obesity (Silver Spring), 19(5): 1083-1089.
- Boeke C. E., Oken E., Kleinman K. P., Rifas-Shiman S. L., Taveras E. M., Gillman, M. W. (2013). Correlations among adiposity measures in school-aged children. BMC Pediatrics, 13: 99.
- Bray G. A. (1993). Fat distribution and body weight. Obesity Research, 1(3): 203-205.
- Chaput J. P., Katzmarzyk P. T., Barn es J. D., Fogelholm M., Hu G., Kuriyan R., Kurpad A., Lambert E. V., Maher C., Maia J., Matsudo V., Olds T., Onywera V., Sarmiento O. L., Standage M., Tudor-Locke C., Zhao P., Tremblay M. S., ISCOLE Research Group (2016). Mid-upper arm circumference as a screening tool for identifying children with obesity: a 12-country study. Pediatric Obesity.
- Ferretti Rde L., Cintra Ide P., Passos M. A., de Moraes Ferrari, G. L., Fisberg, M. (2015). Elevated neck circumference and associated factors in adolescents. BMC Public Health [Electronic resource], 15: 208.
- Gore C., Norton K., Olds T., Whittingham N., Birchall K., Clough M., Dickerson B., Downie L. (1996). Accreditation in anthropometry: an Australian model. In Norton, K. & Olds, T. (Eds.) Anthropometrica. University of New South Wales Press. Sydney.
- Hill A. M., LaForgia J., Coates A. M., Buckley J. D., Howe P. R. C. (2007). Estimating abdominal adipose tissue with DXA and anthropometry. Obesity, 15(2): 504-510.
- Hu L., Hu G., Huang X., Zhou W., You C., Li J., Li P., Wu Y., Wu Q., Wang Z., Gao R., Bao H., Cheng X. (2020). Different adiposity indices and their associations with hypertension among Chinese population from Jiangxi province. BMC Cardiovascular Disorders, 20 (1): 115.
- Huenemann R. L., Hampton M. C., Shapiro L. R. Behnke A. R. (1966). Adolescent food practices associated with obesity. Federation Proceedings, 25 (4): 4-10.
- Huxley R., Mendi S., Zheleznyakov E., Reddy S., Chan J. (2010). Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk--a review of the literature. European Journal of Clinical Nutrition, 64(1): 16-22.
- International Diabetes Federation (2006). The IDF consensus worldwide definition of the metabolic syndrome. Brussels.
- Japanese Society for the Study of Obesity (2016). Guidelines for the management of obesity disease 2016. Life Science Publisher, Tokyo, Japan.
- Kagawa M., Byrne N. M., Hills A. P. (2008a). Comparison of body fat estimation using waist to height ratio (WHtR) using different "waist" measurements in Australian adults. British Journal of Nutrition, 100(5): 1135-1141.
- Kagawa M., Kuroiwa C., Uenishi K., Mori M., Hills A. P., Binns C. W. (2007). New percentage body fat prediction equations for Japanese females. Journal of Physiological Anthropology, 26 (1): 23-29.
- Kagawa M., Tahara Y., Byrne N. M., Moji K., Tsunawake, N., Hills A. P. (2008b). Are Japanese obesity criteria useful for screening at risk Japanese? Consideration from anthropometric indices-percentage body fat relationships. Asia Pacific Journal of Public Health, 20 (Suppl): 102-110.
- Kagawa M., Uenishi K., Kuroiwa C., Mori M., Binns C. W. (2006). Is the BMI cut-off level for Japanese females for obesity set too high? - A consideration from body composition perspective. Asia Pacific Journal of Clinical Nutrition, 15 (4): 502-507.
- Kagawa M., Uenishi K., Mori M., Uchida H., Kerr D. A., Binns C. W., Hills A. P. (2010). Obesity screening for young Japanese males and females using skin fold measurements: the classification revisited. Asia Pacific Journal of Clinical Nutrition, 19 (2): 289-293.
- Kaneko R., Nakazaki N., Tagawa T., Ohishi C., Kusayanagi S., Kim M., Baba T., Ogawa, M., Sato, Y. (2014). A new index of abdominal obesity which effectively predicts risk of colon tumor development in female Japanese. Asian Pacific Journal of Cancer Prevention, 15 (2): 1005-1010.
- Krakauer N. Y., Krakauer J. C. (2012). A new body shape index predicts mortality hazard independently of body mass index. PLoS One, 7 (7): e39504.
- Liu, J. Fan D., Wang X., Yin F. (2020). Association of two novel adiposity indicators with visceral fat area in type 2 diabetic patients: Novel adiposity indexes for type 2 diabetes. Medicine (Baltimore), 99 (19): e20046.
- McMorrow A. M., Connaughton R. M., Lithander F. E., Roche H. M. (2015). Adipose tissue dysregulation and metabolic consequences in childhood and adolescent obesity: potential impact of dietary fat quality. Proceedings of Nutrition Society, 74 (1), 67-82.
- Nagamine S., Suzuki, S. (1964). Anthropometry and body composition of Japanese among men and women. Human Biology, 36: 8-15.
- NCD Risk Factor Collaboration (NCD-RisC) (2016). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet, 387 (10026), 1377-1396.
- Okunogbe A., Nugent R., Spencer G., Ralston J., Wilding J. (2021). Economic impacts of overweight and obesity: current and future estimates for eight countries. BMJ Global Health, 6:e006351. doi:10.1136/bmjgh-2021-006351
- Rosenblad A., NLeppert J., Nilsson G. (2011). The waist-hip-height-ratio (WHHR): an improvement of the waist-hip-ratio for predicting all-cause mortality. Journal of Diabetes, 3 (s1): 231.
- Ross R., Neeland I. J., Yamashita S., Shai I., Seidell J., Magni P., Santos R. D., Arsenault, B. Cuevas A., Hu F. B., Griffin B. A., Zambon A., Barter P., Fruchart J. C., Eckel R. H., Matsuzawa Y., Despres J. P. (2020). Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nature Reviews Endocrinolog, 16 (3): 177-189.
- Saponaro C., Gaggini M., Carli, F., Gastaldelli, A. (2015). The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients, 7 (11): 9453-9474.
- Specchia M. L., Veneziano M. A., Cadeddu C., Ferriero A. M., Mancuso A., Ianuale C., Parente P., Capri S., Ricciardi W. (2015). Economic impact of adult obesity on health systems: a systematic review. European Journal of Public Health, 25 (2): 255-262.
- Stewart A., Marfell-Jones M., Olds, T., de Ridder, H. (2012) International standards for anthropometric assessment (2011). ISAK: Lower Hutt,, New Zealand.
- The Examination Committee of Criteria for 'Obesity Disease' in Japan (2002) New criteria for 'obesity disease' in Japan. Circulation Journal, 66 (11): 987-992.
- Thomas D. M., Bredlau C., Bosy-Westphal A., Mueller M., Shen W., Gallagher D., Maeda Y., McDougall A., Peterson C. M., Ravussin E., Heymsfield S. B. (2013). Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring), 21 (11):2264-2271.
- Unal I., (2017). Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Computational and Mathematical Methods in Medicine, 2017: 1-14, Article ID3762651|https://doi.org/10.1155/2017/3762651
- Valdez R., Seidell J. C., Ahn Y. I., Weiss K. M. (1993). A new index of abdominal adiposity as an indicator of risk for cardiovascular disease. A cross-population study. International Journal of Obesity and Related Metabolic Disorders, 17 (2): 77-82.
- Wang J., Thornton J. C., Kolesnik, S., Pierson Jr, R. N. (2000). Anthropometry in body composition. An overview. Annals of New York Academy of Science, 904:317-326.
- WHO expert consultation (2004). Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet, 363 (10): 157-163.
- Wilmore J. H., Buskirk E. R., DiGirolamo M., Lohman, T. G. (1986). Body composition-a round table-. The Physician and Sportsmedicine, 14 (3): 144-162.
- World Health Organization (1997). Obesity: Preventing and managing the global epidemic. WHO/NUT/NCD/98.1. Geneva.
- World Health Organization (2011). Waist circumference and waist-hip ratio: Report of a WHO Expert Consultation Geneva.
- Yamborisut U., Sakamoto N., Visetchart, P., Tontisirin, K. (2012). Central body fat distribution indices in Thai preschool children. Open Journal of Pediatrics, 2 (1), 47-52.
- Yang H. I., Cho W., Ahn K. Y., Shin S. C., Kim J. H., Yoo S., Park Y. I., Lee E. Y., Lee D. H., Spence J. C., Jeon J. Y., (2020). A new anthropometric index to predict percent body fat in young adults. Public Health Nutrition, 23 (9): 1507-1514.
